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Abstract. The Trotter decomposition and transfer matrix methods have been used to study 
the frustrated quantum spin-: chain. The random bond model in a uniform field and 
Cerromagnctic models in a random fdd have btm investigated. The rtsults indicate the 
existence of non-zero entropy at zero temperature. R e  random bond model also exhibits 
non-analytic behaviour of the magnetization as a function of applied field. 

1. Introduction 

The interplay between quantum, thermal and frustration effects in many body systems 
is clearly one of some complexity. Frustration as an important determining factor in 
the behaviour of interacting systems has been appreciated for some time since Toulouse 
first introduced the concept [l]. This effect may arise due to randomness in sign of 
interpartical interactions such as in spin glasses or through the application of an 
external field. The effect of frustration in classical non-quantum systems has been well 
investigated particularly for the random bond case and spin glasses [2]. The study of 
frustration arising from random fields has mostly been confined to the random field 
king model and related classical models [3]. The effect of randomness and frustration 
on quantum models has been much less studied. Quantum spin glasses have been 
investigated from the quantum analogue of the Sherrington-Kirkpatrick model [4], 
and some exact diagonalization for small clusters has been done using the Lanczos 
method [5,6]. 

The effect of frustration on quantum systems arising from external fields has not 
so far been investigated extensively. There are therefore many questions unanswered. 
In particular it is not known whether the interplay of quantum and thermal effects 
‘wash out’ any of the behaviour evident in classical systems. Here two related models 
are investigated, these are: 

1 .1 .  Model I 

The random bond non-isotropic spin-f chain in a non-zero uniform magnetic field. 
The Hamiltonian for such a system is taken to be 

2t= - 1 Jcj(SfS; tA(S1S; + S : S y ) ) - H  1 Si ( 1 )  

where (Sl, Sy, ST} are Pauli spin-i matrices and {J( j }  are random variables taken to the 
i J  with equal probability, H is a uniform magnetic field, the summation is over nearest 
neighbours and A is the anisotropy parameter. 
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Model I1 

The isotropic spin-f ferromagnetic chain in both a uniform and random magnetic field. 
The Hamiltonian for such a system is taken to be 

Here ( h ! }  are external random fields. Two cases are considered: 
case ( a ) :  { h i ]  distributed continuously according to a Gaussian distribution with mean 

case (b) :  { h i ]  distributed discretely taking + 1  with equal probability. 
The method used is the generalization of the Trotter decomposition as developed by 
Suzuki [7]. This method reduces a d dimensional quantum system to a d  + 1 dimensional 
king system using the result that 

0 and standard deviation 1. 

where A; are non-commuting operators as in Hamiltonians 1 and 2. The way in which 
3 is exploited to produce the required classical system is well explained in many places 
[S-101 and will not be repeated in detail here. The only approximation in the method 
arises through the replacement of the limit in (3) by some large but finite value of m. 
This reduces the original quantum problem to a 2m x N king model where N is the 
length of the original chain and the king Hamiltonian contains four-spin interactions. 
The partition function of the analogue king model has been calculated using a 
development of the transfer matrix method of Morgenstern, Binder and Hornreich 
[ l l ] .  The transfer matrix is applied along the direction of the chain and the only 
difference from the original method is that at each iteration two spins are added instead 
of one. This is necessary because of the four-spin interactions in the king model. The 
calculation was done on a DAP which is a single instruction multiple data parallel 
processor capable of performing 4096 simultaneous operations. Using this machine it 
was possible to calculate the partition function for long chains. All thermodynamic 
quantities were then calculated by numerical differentiation. 

Because of the approximation of truncating (3) at some finite value of m, errors 
are introduced, the first term of which is (JS’lmT)’. Because of this there are restrictions 
on the lowest temperature that can be reached. Since computer memory restricts m to 
a maximum value of m = 9 only temperatures T >  0.11 are accessible. 

Results 

Model 1 

All results are obtained from a single long chain containing 1000 spins. The partition 
function was obtained for a single external field strength of H = J and two values of 
the anisotropy parameter. These were A = 1 (isotropic) and A = 0.2 (easy axis). 

Results for the entropy are shown in figure 1. The implication from these results 
is that for A = 1 there is zero entropy at T = 0 while there is finite entropy for A = 0.2. 
The approach of the A = 1 curve to zero has been investigated. It is not possible to fit 
the results to a power low approach of the form T“. Figure 2 shows the data on a 
log-linear plot. For A = 1 the results are clearly consistent with an exponential approach 
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Figure 2. Log-linear plot of entropy S against reciprocal of temperature T, for model I: 

is for A = 1 and * is for A = 0.2. Lines are only visual guides. 

- 
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to zero of the form 
S - e - ( ~ I T )  

However the data at the lowest temperature is seen to pull away from linearity indicating 
the possibility of crossover to even more rapid approach to zero. The result for A = 0.2 
are also shown on figure 2 confirming the approach to a non-zero value already 
indicated in figure 1. This result should be compared with that of Puma and Fernandez 
[ 121 for the random field king model. Their result for the T = 0 entropy for that model 
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was 0.125k compared with O.lk for the present case, k being the Boltzmann constant. 
Thus quantum effects seems to have suppressed but not eliminated T=O entropy. 

Figure 3 shows plots of the magnetization for varying applied field H .  For A = 0.2 
distinct discontinuities of slope are apparent, particularly if comparison is made with 
A = 1 case which is also shown. 

To try to interpret this result consideration can be given to the analogous result 
for the one dimensional random field king model. Here exact calculation at T = O  
shows that the magnetization is a devil’s staircase [13-15]. Even though the results 
here are not given at T=O but at T=O.IJ, the lowest temperature accessible, the 
indications are of similar structure to the magnetization for the quantum case. That is 
the magnetization is not everywhere an analytic function of external field. It is at 
present a matter of speculation as to whether the non-analyticities are of the same 
nature in both the quantum and king cases. 
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Figure 3. Magnetization M against external magnetic field H at temperature T=O.IJ for 
model I: is far h = 1 and is for A = 0.2. Lines are only visual guides. 

1.2. Model II 

A single chain containing 250 spins has been studied. Results for the entropy for the 
case external field H = J and continuous random fields (case ( a ) )  and discrete random 
fields (case (b ) )  are shown in figure 4. The results for discrete random fields indicate 
clearly a non-zero entropy at T = 0. For continuous Gaussian fields the implication is 
less clear but a zero entropy is indicated from the present data through a small but 
finite entropy cannot be excluded. 

Results have also been obtained for other values of the uniform external field. The 
data here is rather weak and it will be necessary to access even lower temperatures 
before any definite prediction can be made. The tentative conclusion so far which is 
put forward only as a speculation is that for the Gaussian field the entropy is always 
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Figure 4. Entropy S against temperature T for model I1 and extemal field H = I: 0 is for 
case (a)  and * is for case ( b ) .  

zero for all H G  1. However for the discrete case there maybe a crossover to zero 
entropy at lower field strengths. The precise resolution of these possibilities will have 
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